If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=19y+7
We move all terms to the left:
y^2-(19y+7)=0
We get rid of parentheses
y^2-19y-7=0
a = 1; b = -19; c = -7;
Δ = b2-4ac
Δ = -192-4·1·(-7)
Δ = 389
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{389}}{2*1}=\frac{19-\sqrt{389}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{389}}{2*1}=\frac{19+\sqrt{389}}{2} $
| 5^-3x=9^x+2 | | x/2+x+2/4=9 | | 8n+73=185 | | -3n+5=2n+7 | | (1/4)^x+2=32 | | -4x-23=2x+1 | | 4+6x=5x | | 7x=7x=-3+x | | 3x+22=-x-2 | | 9^4x-1=729 | | 6t+9=-3+9t | | 8x-43=2x+11 | | -13=s+14 | | w+-3=-9 | | a-()-2=9 | | m-100=0 | | 36=48•t | | e+10=3 | | 1=q+9 | | n+-4=-9 | | a+18=-15 | | d+-18=4 | | n-25=38 | | g-5=-6 | | e÷5+6=2 | | -x-5x=36 | | 5+p=-8 | | 6x=9-5x=16 | | 8g-6=50 | | 0.5x^2−x=0 | | 1/2x+x+2/3=9 | | 7-5a=32 |